Tangent to a Curve

Intuitively the idea of a tangent to a curve at a point P, is a natural one, it is a line that touches the curve at the point P, with the same direction as the curve. However this description is somewhat vague, since we have not indicated what we mean by the direction of the curve.

Tangent to a Curve

Intuitively the idea of a tangent to a curve at a point P, is a natural one, it is a line that touches the curve at the point P, with the same direction as the curve. However this description is somewhat vague, since we have not indicated what we mean by the direction of the curve.

- In Euclidean Geometry, the notion of a tangent to a circle at a point P on its circumference, is precise; it is defined as the unique line through the point P that intersects the circle once and only once.

Tangent to a Curve

Intuitively the idea of a tangent to a curve at a point P, is a natural one, it is a line that touches the curve at the point P, with the same direction as the curve. However this description is somewhat vague, since we have not indicated what we mean by the direction of the curve.

- In Euclidean Geometry, the notion of a tangent to a circle at a point P on its circumference, is precise; it is defined as the unique line through the point P that intersects the circle once and only once.

- The above definition does not work for the line that our intuition nominates for the tangent to $y=x^{3}$ at the point $P(1,1)$, since this line cuts the graph twice.

Definition of Tangent Line

Our immediate goal in the course is to make precise the definition of the direction or slope of a curve (graph of a function) at a point P (if this is possible). In so doing, we can make a precise definition of a tangent to a curve at a point P as the unique line through the point P with the same slope as the curve (when that slope exists).

Definition of Tangent Line

Our immediate goal in the course is to make precise the definition of the direction or slope of a curve (graph of a function) at a point P (if this is possible). In so doing, we can make a precise definition of a tangent to a curve at a point P as the unique line through the point P with the same slope as the curve (when that slope exists).

- In the process of defining the slope of a function at a point, we will encounter the concept of a limit and the concept of continuity. Both are intuitive concepts which we will make precise so that we can determine exactly where and how they apply.

Definition of Tangent Line

Our immediate goal in the course is to make precise the definition of the direction or slope of a curve (graph of a function) at a point P (if this is possible). In so doing, we can make a precise definition of a tangent to a curve at a point P as the unique line through the point P with the same slope as the curve (when that slope exists).

- In the process of defining the slope of a function at a point, we will encounter the concept of a limit and the concept of continuity. Both are intuitive concepts which we will make precise so that we can determine exactly where and how they apply.
- Although the process of defining the slope and learning to calculate slopes (derivatives) for a wide range of functions will take some time, we can see the concept in action immediately with some particular examples.

Example 1

Example 1 Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point where $x=1$ (at the point $P(1,1)$). This means, we need to find the slope of the tangent line touching the curve drawn in the picture.

Example 1

Example 1 Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point where $x=1$ (at the point $P(1,1)$). This means, we need to find the slope of the tangent line touching the curve drawn in the picture.

- Since we have just one point on the tangent line, namely $P(1,1)$, we cannot use two points on the line to find the slope.

Example 1

Example 1 Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point where $x=1$ (at the point $P(1,1)$). This means, we need to find the slope of the tangent line touching the curve drawn in the picture.

- Since we have just one point on the tangent line, namely $P(1,1)$, we cannot use two points on the line to find the slope.
- In fact we just do not have enough information to find this slope. So should we quit?

Example 1

Example 1 Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point where $x=1$ (at the point $P(1,1)$). This means, we need to find the slope of the tangent line touching the curve drawn in the picture.

- Since we have just one point on the tangent line, namely $P(1,1)$, we cannot use two points on the line to find the slope.
- In fact we just do not have enough information to find this slope. So should we quit?
- We can make an estimate of this slope. How?

Example 1

Example 1 Find the equation of the tangent line to the curve $y=\sqrt{x}$ at the point where $x=1$ (at the point $P(1,1)$). This means, we need to find the slope of the tangent line touching the curve drawn in the picture.

- Since we have just one point on the tangent line, namely $P(1,1)$, we cannot use two points on the line to find the slope.
- In fact we just do not have enough information to find this slope. So should we quit?
- We can make an estimate of this slope. How?
- We can approximate the slope of this tangent line using the slope of a line segment joining $P(1,1)$ to a point Q on the curve near P.

Slope of a Secant $m_{P Q}$.

Let us consider the point $Q(1.5, \sqrt{1.5})$, which is on the graph of the function $f(x)=\sqrt{x}$.

- Since Q is on the curve $y=\sqrt{x}$, the slope of the line segment joining the points P and Q (secant), $m_{P Q}$ the change in elevation on the curve $y=\sqrt{x}$ between the points P and Q divided by the change in the value of $x, \frac{\Delta y}{\Delta x}$ (see diagram on right).

Slope of a Secant $m_{P Q}$.

Let us consider the point $Q(1.5, \sqrt{1.5})$, which is on the graph of the function $f(x)=\sqrt{x}$.

- Since Q is on the curve $y=\sqrt{x}$, the slope of the line segment joining the points P and Q (secant), $m_{P Q}$ the change in elevation on the curve $y=\sqrt{x}$ between the points P and Q divided by the change in the value of $x, \frac{\Delta y}{\Delta x}$ (see diagram on right).
- $m_{P Q}=\frac{\Delta y}{\Delta x}=\frac{\sqrt{1.5}-\sqrt{1}}{1.5-1} \approx 0.4495$

Slope of a Secant $m_{P Q}$.

Let us consider the point $Q(1.5, \sqrt{1.5})$, which is on the graph of the function $f(x)=\sqrt{x}$.

- Since Q is on the curve $y=\sqrt{x}$, the slope of the line segment joining the points P and Q (secant), $m_{P Q}$ the change in elevation on the curve $y=\sqrt{x}$ between the points P and Q divided by the change in the value of $x, \frac{\Delta y}{\Delta x}$ (see diagram on right).
- $m_{P Q}=\frac{\Delta y}{\Delta x}=\frac{\sqrt{1.5}-\sqrt{1}}{1.5-1} \approx 0.4495$
- If we think of the curve $y=\sqrt{x}$ as a hill and imagine we are walking up the hill from left to right, $m_{P Q}$ agrees with our intuitive idea of the average slope or incline on the hill between the points P and Q.

Slope of a Secant $m_{P Q}$.

Let us consider the point $Q(1.5, \sqrt{1.5})$, which is on the graph of the function $f(x)=\sqrt{x}$.

- Since Q is on the curve $y=\sqrt{x}$, the slope of the line segment joining the points P and Q (secant), $m_{P Q}$ the change in elevation on the curve $y=\sqrt{x}$ between the points P and Q divided by the change in the value of $x, \frac{\Delta y}{\Delta x}$ (see diagram on right).
- $m_{P Q}=\frac{\Delta y}{\Delta x}=\frac{\sqrt{1.5}-\sqrt{1}}{1.5-1} \approx 0.4495$
- If we think of the curve $y=\sqrt{x}$ as a hill and imagine we are walking up the hill from left to right, $m_{P Q}$ agrees with our intuitive idea of the average slope or incline on the hill between the points P and Q.
- Because, Q is so close to P, and because the curve $y=\sqrt{x}$ stays close to the tangent near P, slope of tangent at the point $\quad P \approx m_{P Q} \approx 0.4495$

Slopes of Many Secants

If we choose a different point Q on the curve $y=\sqrt{x}$ we get a different estimate for the slope of the tangent line to the curve at P. Complete the following table of estimates.

	slope of $\operatorname{secant}(Q=Q(x, \sqrt{x}))$	Δx	Δy
x	$m_{P Q}=\frac{\sqrt{x}-\sqrt{1}}{x-1}=\frac{\text { Change in y (from P to Q) }}{\text { Change in } \times(\text { from P to Q) }}$	$x-1$	$\sqrt{x}-\sqrt{1}$
3.5	$\frac{\sqrt{3.5-1}}{2.5}=.348$	2.5	.8708
3.0	$\frac{\sqrt{3}-1}{2}=.366$	2	.7320
2.5	$\frac{\sqrt{2.5-1}}{1.5}=.387$	1.5	.5811
2.0	$\frac{\sqrt{2}-1}{1}=.414$	1	.414
1.5	$\frac{1}{1.5-1}=.449$.5	.2247
1.2	.4772	.2	.0954
1.1	.4881	.1	.0488
1.01	.4987	.01	.00498
1.001	$\frac{\sqrt{1.001}-1}{.001}=$.001	4.99×10^{-4}
1.0001		.0001	
1.00001		.00001	

Limit of Slopes Secants as Q approaches P

complete the following sentence:
As x approaches 1 , the values of $m_{P Q}$ approach

	slope of secant $(Q=Q(x, \sqrt{x}))$	Δx	Δy
x	$m_{P Q}=\frac{\sqrt{x}-\sqrt{1}}{x-1}=\frac{\text { Change in y (from P to Q) }}{\text { Change in } \times(\text { from P to Q) }}$	$x-1$	$\sqrt{x}-\sqrt{1}$
3.5	$\frac{\sqrt{3.5-1}}{2.5}=.348$	2.5	.8708
3.0	$\frac{\sqrt{3}-1}{2}=.366$	2	.7320
2.5	$\frac{\sqrt{2.5-1}}{1.5}=.387$	1.5	.5811
2.0	$\frac{\sqrt{2}-1}{\frac{1}{1}}=.414$	1	.414
1.5	$\frac{\sqrt{1.5}-1}{5}=.449$.5	.2247
1.2	.4772	.2	.0954
1.1	.4881	.1	.0488
1.01	.4987	.01	.00498
1.001	$\frac{\sqrt{1.0011} 1}{.001}=.49987$.001	4.99×10^{-4}
1.0001	$\frac{\sqrt{1.0001-1}}{.0001}=.499987$.0001	0.0000499988
1.00001	.499999987	.00001	$4.99999 * 10^{-} 6$

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach $\underline{0.5}$

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach $\underline{0.5}$

> will be used in the course.

- We can rephrase the sentence above in many ways all of which

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach $\underline{0.5}$

will be used in the course.

- As Δx approaches 0 , the values of $m_{P Q}$ approach $1 / 2$.
- We can rephrase the sentence above in many ways all of which

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach 0.5

will be used in the course.

- As Δx approaches 0 , the values of $m_{P Q}$ approach $1 / 2$.
- As Δx approaches 0 , the values of $\frac{\Delta y}{\Delta x}$ approach $1 / 2$
- We can rephrase the sentence above in many ways all of which

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach 0.5

will be used in the course.

- As Δx approaches 0 , the values of $m_{P Q}$ approach $1 / 2$.
- As Δx approaches 0 , the values of $\frac{\Delta y}{\Delta x}$ approach $1 / 2$
- $\lim _{x \rightarrow 1} m_{P Q}=1 / 2$
- We can rephrase the sentence above in many ways all of which

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach $\underline{0.5}$

- We can rephrase the sentence above in many ways all of which
will be used in the course.
- As Δx approaches 0 , the values of $m_{P Q}$ approach $1 / 2$.
- As Δx approaches 0 , the values of $\frac{\Delta y}{\Delta x}$ approach $1 / 2$
- $\lim _{x \rightarrow 1} m_{P Q}=1 / 2$
- $\lim _{Q \rightarrow P} m_{P Q}=1 / 2$

Notation for Limit of Slopes of Secants

As x approaches 1 , the values of $m_{P Q}$ approach $\underline{0.5}$

- We can rephrase the sentence above in many ways all of which
will be used in the course.
- As Δx approaches 0 , the values of $m_{P Q}$ approach $1 / 2$.
- As Δx approaches 0 , the values of $\frac{\Delta y}{\Delta x}$ approach $1 / 2$
- $\lim _{x \rightarrow 1} m_{P Q}=1 / 2$
- $\lim _{Q \rightarrow P} m_{P Q}=1 / 2$
- $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=1 / 2$.

The slopes of the line segments $P Q$ approach the slope of the tangent we seek, as Q approaches P. Hence it is reasonable to define the slope of the tangent to be this limit of the slopes of the line segments $P Q$ as Q approaches P.
Hence the slope of the tangent to the curve $y=\sqrt{x}$ at the point $P(1,1)$ is $1 / 2$ and the equation of the tangent to the curve $y=\sqrt{x}$ at this point is

Equation of the tangent at $\quad P$ is $\quad y-1=\frac{1}{2}(x-1) \quad$ or $\quad y=\frac{1}{2} x+\frac{1}{2}$.

More Notation

We will also make heavy use of the following notation: We use h to denote the small change in the value of x (between P and Q) Instead of using Δx. This translates to

$$
m_{P Q}=\frac{\sqrt{1+h}-\sqrt{1}}{h}=\frac{\sqrt{1.5}-\sqrt{1}}{.5}
$$

See your notes for more details including a translation of the calculations in the table above to this notation.

More Notation

We will also make heavy use of the following notation: We use h to denote the small change in the value of x (between P and Q) Instead of using Δx. This translates to

$$
m_{P Q}=\frac{\sqrt{1+h}-\sqrt{1}}{h}=\frac{\sqrt{1.5}-\sqrt{1}}{.5}
$$

- Using the new notation, we can rephrase our statement about the limiting value of the slope of the secants as: As h approaches 0 , the values of $m_{P Q}=\frac{\sqrt{1+h}-\sqrt{1}}{h}$ approach $1 / 2$

See your notes for more details including a translation of the calculations in the table above to this notation.

More Notation

We will also make heavy use of the following notation: We use h to denote the small change in the value of x (between P and Q) Instead of using Δx. This translates to

$$
m_{P Q}=\frac{\sqrt{1+h}-\sqrt{1}}{h}=\frac{\sqrt{1.5}-\sqrt{1}}{.5}
$$

- Using the new notation, we can rephrase our statement about the limiting value of the slope of the secants as:
As h approaches 0 , the values
of
$m_{P Q}=\frac{\sqrt{1+h}-\sqrt{1}}{h}$ approach $1 / 2$
- or in the language of limits :
$\lim _{h \rightarrow 0} m_{P Q}=\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-\sqrt{1}}{h}=1 / 2$

See your notes for more details including a translation of the calculations in the table above to this notation.

Instantaneous rate of Change

The slope of the tangent to a curve at a point gives us a measure of the instantaneous rate of change of the curve at that point. This measure is not new to us, in a car, the odometer tells us the distance the car has travelled (under its own steam) since it rolled off the assembly line. This a function D of time, t. The speedometer on a car gives us the instantaneous rate of change of the function $D(t)$, with respect to time, t, at any given time. When you are driving a car, you see that the speed of the car is usually changing from moment to moment. This reflects the fact that the instantaneous rate of change of $D(t)$ or slope of the tangent to the curve $y=D(t)$ varies from moment to moment.

Increasing/Decreasing Functions

When a function is increasing, we get a positive slope for the tangent and when a function is decreasing, we get a negative slope for the tangent. $D(t)$ above never decreases, reflecting the fact that the speedometer always reads 0 or something positive.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?
- Reaches the ground when $s(t)=442$.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?
- Reaches the ground when $s(t)=442$.
- $4.9 t^{2}=442 \rightarrow t^{2}=442 /(4.9)$

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?
- Reaches the ground when $s(t)=442$.
- $4.9 t^{2}=442 \rightarrow t^{2}=442 /(4.9)$
- $t=\sqrt{442 /(4.9)} \approx 9.498$ seconds.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?
- Reaches the ground when $s(t)=442$.
- $4.9 t^{2}=442 \rightarrow t^{2}=442 /(4.9)$
- $t=\sqrt{442 /(4.9)} \approx 9.498$ seconds.
- (c) What is the average speed of the toy on its way to the ground?

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (a) How far has the toy travelled after $t=3$ seconds?
- We can just use the formula here: distance travelled $=S(3)=4.9(9)=44.1 \mathrm{~m}$.
- (b) How long does it take for the toy to reach the ground?
- Reaches the ground when $s(t)=442$.
- $4.9 t^{2}=442 \rightarrow t^{2}=442 /(4.9)$
- $t=\sqrt{442 /(4.9)} \approx 9.498$ seconds.
- (c) What is the average speed of the toy on its way to the ground?
- Average speed $=\frac{\text { Distance travelled }}{\text { Time }} \approx \frac{442}{9.49} \approx 4.654 \mathrm{~m} / \mathrm{s}$

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

$$
\text { Time Interval } \mid \text { Average velocity }=\frac{\Delta s}{\Delta t}(\text { measured in } \mathrm{m} / \mathrm{s})
$$

$3 \leq t \leq 4$	
$3 \leq t \leq 3.1$	
$3 \leq t \leq 3.01$	
$3 \leq t \leq 3.001$	
$3 \leq t \leq 3.0001$	

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters. }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

Time Interval	Average velocity $=\frac{\Delta s}{\Delta t}($ measured in $\mathrm{m} / \mathrm{s})$
$3 \leq t \leq 4$	$\frac{s(4)-s(3)}{4-3}$
$3 \leq t \leq 3.1$	
$3 \leq t \leq 3.01$	
$3 \leq t \leq 3.001$	
$3 \leq t \leq 3.0001$	

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters. }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

Time Interval	Average velocity $=\frac{\Delta s}{\Delta t}($ measured in $\mathrm{m} / \mathrm{s})$
$3 \leq t \leq 4$	$\frac{s(4)-s(3)}{4-3}=\frac{4.9(16)-4.9(9)}{1}=34.3 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.1$	
$3 \leq t \leq 3.01$	
$3 \leq t \leq 3.001$	
$3 \leq t \leq 3.0001$	

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

Time Interval	Average velocity $=\frac{\Delta s}{\Delta t}($ measured in $\mathrm{m} / \mathrm{s})$
$3 \leq t \leq 4$	$\frac{s(4)-s(3)}{4-3}=\frac{4.9(16)-4.9(9)}{1}=34.3 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.1$	$\frac{s(3.1)-s(3)}{3.1-3}=\frac{4.9(3.1)^{2}-4.9(9)}{0.1}=29.89 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.01$	
$3 \leq t \leq 3.001$	
$3 \leq t \leq 3.0001$	

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

$$
\begin{array}{c|c}
\text { Time Interval } & \text { Average velocity }=\frac{\Delta s}{\Delta t}(\text { measured in } \mathrm{m} / \mathrm{s}) \\
\hline 3 \leq t \leq 4 & \frac{s(4)-s(3)}{4-3}=\frac{4.9(16)-4.9(9)}{1}=34.3 \mathrm{~m} / \mathrm{s} \\
\hline 3 \leq t \leq 3.1 & \frac{s(3.1)-s(3)}{3.1-3}=\frac{4.9(3.1)^{2}-4.9(9)}{0.1}=29.89 \mathrm{~m} / \mathrm{s} \\
\hline 3 \leq t \leq 3.01 & \frac{s(3.01)-s(3)}{3.01-3}=\frac{4.9(3.01)^{2}-4.9(9)}{0.01} \approx 29.45 \mathrm{~m} / \mathrm{s} \\
\hline 3 \leq t \leq 3.001 & \\
\hline 3 \leq t \leq 3.0001 &
\end{array}
$$

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

Time Interval \quad Average velocity $=\frac{\Delta s}{\Delta t}($ measured in $\mathrm{m} / \mathrm{s})$

$3 \leq t \leq 4$	$\frac{s(4)-s(3)}{4-3}=\frac{4.9(16)-4.9(9)}{1}=34.3 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.1$	$\frac{s(3.1)-s(3)}{3.1-3}=\frac{4.9(3.1)^{2}-4.9(9)}{0.1}=29.89 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.01$	$\frac{s(3.01)-s(3)}{3.01-3}=\frac{4.9(3.01)^{2}-4.9(9)}{0.01} \approx 29.45 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.001$	$\frac{s(3.001)-s(3)}{3.001-3}=\frac{4.9(3.001)^{2}-4.9(9)}{0.001} \approx 29.405 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.0001$	$\frac{s(3.0001)-s(3)}{3.0001-3}=\frac{4.9(3.0001)^{2}-4.9(9)}{0.0001} \approx 29.4005 \mathrm{~m} / \mathrm{s}$

Example

Example A Buzz Lightyear toy is dropped (no initial velocity) from the top of the Willis Tower in Chicago, which is 442 m tall.
We will denote the distance fallen by the toy after t seconds by $s(t)$ meters. We have a formula for $s(t)$:

$$
s(t)=4.9 t^{2} \text { meters }
$$

See your notes for more details. The velocity or speed of the toy at any given time is the instantaneous rate of change of the function $s(t)$ at that time.

- (d) Use the table below to estimate the velocity of the toy after 3 seconds?

Time Interval \quad Average velocity $=\frac{\Delta s}{\Delta t}($ measured in $\mathrm{m} / \mathrm{s})$

$3 \leq t \leq 4$	$\frac{s(4)-s(3)}{4-3}=\frac{4.9(16)-4.9(9)}{1}=34.3 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.1$	$\frac{s(3.1)-s(3)}{3.1-3}=\frac{4.9(3.1)^{2}-4.9(9)}{0.1}=29.89 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.01$	$\frac{s(3.01)-s(3)}{3.01-3}=\frac{4.9(3.01)^{2}-4.9(9)}{0.01} \approx 29.45 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.001$	$\frac{s(3.001)-s(3)}{3.001-3}=\frac{4.9(3.001)^{2}-4.9(9)}{0.001} \approx 29.405 \mathrm{~m} / \mathrm{s}$
$3 \leq t \leq 3.0001$	$\frac{s(3.0001)-s(3)}{3.0001-3}=\frac{4.9(3.0001)^{2}-4.9(9)}{0.0001} \approx 29.4005 \mathrm{~m} / \mathrm{s}$

- In fact the velocity after 3 seconds is $29.4 \mathrm{~m} / \mathrm{s}$. We will be able to calculate this precisely after a week or two.

